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Abstract

The phenomenon of churn degrades the lookup perfor-
mance of DHT-based P2P systems greatly. To date, a num-
ber of approaches have been proposed to handle it from
both the system side and the client side. However, there
lacks theoretical analysis to direct how to make design
choices under different churn levels and how to configure
their parameters optimally. In this paper, we analytically
study three important aspects on improving DHT lookup
performance under churn, i.e., lookup strategy, lookup par-
allelism and lookup key replication. Our objective is to
build a theoretical basis for DHT designers to make better
design choices in the future. We first compare the perfor-
mance of two representative lookup strategies - recursive
routing and iterative routing, and explore the existence of
better alternatives. Then we show the effectiveness of par-
allel lookup in systems with different churn levels and how
to select the optimal degree of parallelism. Due to the im-
portance of key replication on lookup performance, we also
analyze the reliability of replicated keys under two different
replication policies, and discuss how to make configuration
in different environments. Besides analytical study, our re-
sults are also validated by simulation, and Kad [1] is taken
as a case to show the meaningfulness of our analysis.

1 Introduction

In recent years, a number of peer-to-peer (P2P) systems
(e.g., Naspter, Gnutella, KaZaA, BitTorrent, Kad, etc) have
been invented and widely deployed. The P2P model now
emerges as a dominant paradigm over the Internet, and
greatly changes the communication style between users.
Among various P2P systems, DHT-based (Distributed Hash
Table) design is taken as a promising approach to build a
simple and yet efficient infrastructure for P2P applications.

For real deployment, however, system designers have
to tackle many new challenges. As we know, a P2P sys-

tem is a decentralized and dynamic system, in which peers
continue to join and leave. This phenomenon of peer dy-
namics is called “churn”, and may cause lookup failure
or data key loss. To improve the DHT performance un-
der churn, researchers have proposed various kinds of ap-
proaches (e.g., [2], [10], [5], [6], etc) in the aspects of
lookup strategy, neighbor selection, data redundancy, par-
allel lookup, failure recovery, etc. However, the effective-
ness of these approaches is mostly verified via simulation or
empirical study, and there is few analytical study on these
design choices and their related parameter settings. This
motivates us to perform analysis to get a deeper insight of
the proposed design solutions, explore their optimal para-
meter configuration and investigate the existence of better
alternative approaches.

In this paper, we perform an analytical study on three
important aspects on improving DHT lookup performance
under churn:

• Lookup Strategy: We compare the performance of two
representative lookup strategies - Recursive Routing
(RR) and Iterative Routing (IR), and deduce the closed-
form expressions of their performance metrics. With
the theoretical results, we can know exactly which
strategy is better and how good it is for a given setting.
It is observed that, both Recursive Routing (RR) and It-
erative Routing (IR) can only perform well under a cer-
tain range of churn levels. To make the lookup strategy
perform the best under the whole range of churn lev-
els, two enhanced alternatives are considered. We find
that, a simple Two-Phase Routing Strategy (RR+IR)
can well exploit the benefits of both recursive routing
and iterative routing. Besides, we also propose another
new lookup strategy, in which recursive routing is en-
hanced with an ACK mechanism. It further improves
the lookup performance, and behaves better than RR,
IR and RR+IR.

• Lookup Parallelism: We provide the closed-form
expressions for the performance metrics of parallel
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lookup, and show the effectiveness of parallel lookup
under different churn levels. Considering the tradeoff
between the lookup latency and the message overhead,
our theorem can help the designers determine an ap-
propriate parallelism degree.

• Lookup Key Replication: We study two typical poli-
cies of key replication to improve lookup performance
under churn: (i) replication without repair mechanism;
and (ii) replication with repair mechanism. We for-
mally deduce the expected lifetime of the replicated
key under different policies. It is found that, whether a
repair mechanism is necessary depends largely on the
peer lifetime distribution, instead of the system churn
level. Under exponential lifetime distribution, a repair
mechanism is required no matter the churn level is high
or low; but under Pareto lifetime distribution, if there
exists a very heavy tail, simple replication is enough to
guarantee a rather long lifetime of the replicated key. It
is true even under a high-churn environment. As to the
selection of the replication factor and the repair rate,
it is application-specific and we discuss some practi-
cal considerations (e.g., data type, data lifetime, etc)
during selecting the proper parameters.

Our theorems make it possible for DHT designers to
know how to make the best design choices under a given
churn level precisely, instead of based on intuitions. Besides
analytical study, we also perform simulation to validate our
results. Due to the space limit, please refer to [14] for the
simulation details and the proofs of our theorems.

The remainder of this paper is structured as follows. We
will first introduce the related work in Sec. 2. The model
and analysis are presented in Sec. 3. Finally, Sec. 4 sum-
marizes the whole paper.

2 Related Work

Churn makes P2P systems different from traditional dis-
tributed systems, and brings new challenges to system de-
signers. To better understand their characteristics and im-
pact, quite a few research works have been conducted in the
recent years. Sariou [11] and Daniel et al. [12] performed
detailed measurements about real P2P file-sharing systems,
including Napster, Gnutella, BitTorrent, Kad, etc. They
found similar phenomena of system churn across these sys-
tems, and the peer lifetime follows a heavy-tailed distribu-
tion.

To mitigate the effects of churn, a number of solutions
have been proposed. In [10], Sean et al. proposed to han-
dle churn by reactive or periodic failure recovery, accurate
calculation of lookup timeout and proximity neighbor selec-
tion. Later, Simon et al. [5] further introduced the concept
of K-consistency and designed a failure recovery protocol

for K-consistent P2P networks. In [2], Frank et al. explored
a range of solutions, such as iterative or recursive routing,
proximity neighbor selection, replication, erasure coding,
etc, in their implementation of the DHash system. In [7], Li
et al. provided a PVC (Performance vs. Cost) model to eval-
uate different DHT design tradeoffs under churn by their
self-developed simulator - p2pSim. Besides performing im-
provement on existing DHTs, some new DHTs are designed
particularly for churn-intensive environments, such as Ac-
cordian [6], etc. Different from the above simulation-based
study, Daniel et al. [13] developed measurement tools to
study the impacts of churn in the real Kad system [1].

There also exist some analytical studies about DHT per-
formance under churn. However, most of them mainly fo-
cus on one special kind of DHT. In [8], David et al. provided
asymptotic performance bounds of Chord under churn. In
[3], [4], El-Ansary, Krishnamurthy et al. analyzed the per-
formance of Chord by using a master-equation-based ap-
proach. Our analysis differs in that we consider the com-
mon issues in DHT designs, and our objective is not just to
analyze the impact of churn, but to help system designers
make wise decisions on better handling churn.

3 Modeling and Analysis

3.1 System Model

To make our analysis tractable, some necessary assump-
tions are made as follows: first, we assume that the under-
lying links are ideal, and there is no packet loss during rout-
ing. Therefore, the routing failure is only caused by stale
contacts in the routing table due to system churn; second,
to model the system churn, each arriving peer is assumed to
be associated with a lifetime L, which is a random variable
following certain distributions.

When a peer v joins the system, it will select (or be as-
signed) a set of existing nodes as its neighbors. Here, the
peer selection is assumed to be independent of the peer life-
time. Define R to be the residual lifetime of one neighbor
since the peer v joined. According to [9], the CDF (Cu-
mulative Distribution Function) of the residual lifetime R is
given by:

FR(x) = P (R < x) =
1

E[L]

∫ x

0

(1 − F (z))dz. (1)

where F (x) is the CDF of peer lifetime L, and E[L] is the
expectation of peer lifetime L.

A neighbor leaves the system when its residual lifetime
is exhausted. In that case, it will take some time S for the
peer v to detect the failure and replace it with a live peer.
During this period, that contact in the routing table of peer
v is in the “stale” state; correspondingly, other contacts that
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are not in the “stale” state are referred to as “fresh” contacts.
If peer v forwards a lookup to a stale contact, the lookup
will fail and cause a timeout. Under the steady state, the
probability that a contact is fresh is given by:

p =
E[R]

E[R] + E[S]
. (2)

where E[R] is the expected residual lifetime of a neighbor
(E[R] =

∫ ∞
0

(1 − FR(x))dx) and E[S] stands for the ex-
pected time for neighbor replacement (i.e., repair time) in
case of failure.

In the following section, we will perform analysis on
lookup strategy, lookup parallelism and lookup key repli-
cation based on the above system model.

3.2 Lookup Strategy

The lookup strategies of DHT systems can be generally
categorized into two types: Recursive Routing (RR) and It-
erative Routing (IR).

Most DHTs (e.g., Tapestry, Pastry, etc) adopt recursive
routing in their design, in which intermediate nodes on the
routing path will directly forward the query to the node
in the next hop, without making any acknowledgement to
the originator. Thus, the query message can be routed as
quickly as possible, but the originator has no control over
the lookup process. If the lookup returns no response, the
originator has to wait until its timeout, as there is no knowl-
edge about the real cause.

Contrary to recursive routing, iterative routing enables
the originator to control the whole lookup process. In each
step, instead of letting the intermediate node forward the
query on its behalf, the originator will ask the intermediate
node to return the address of the next hop. With the returned
address, the originator initiates the query to each successive
node on its own, until the destination is reached. Due to
its manageable behavior, Kademlia and its variant Kad use
iterative routing in their design.

For the reason of generalization, we use a variable l to
denote the length of routing path between the source and
the destination. The value of l is different in various DHTs,
e.g., O(logN) in Chord, O(1) in Onehop Overlay, etc. We
denote the average one-hop routing latency by Δ, and the
Round-Trip Time by RTT = 2Δ.

In both recursive routing and iterative routing, when the
lookup responds with no reply, a new lookup will be re-
launched after a timeout. However, they differ in their
timeout settings. In recursive routing, the timeout is set
as Tl, which should be no less than the time to complete
the entire lookup, i.e., Tl ≥ (l + 1)Δ; in iterative routing,
the timeout Th only needs to be no less than RTT , i.e.,
Th ≥ RTT = 2Δ.

To measure the lookup performance, two metrics are
adopted: (1) the lookup latency W , which is the latency
to complete the entire lookup; and (2) the message over-
head C, which refers to the number of messages incurred
during the lookup process. By applying probability theory,
we have the following results 1:

Theorem 1 For Recursive Routing (RR), the expected
lookup latency is given by

E[WRR] = (l + 1)Δ +
1 − pl

pl
Tl

and the expected message overhead is given by

E[CRR] = (l + 1) +
(1 − pl) × [1 − (l + 1)pl + lpl+1]

pl(1 − p)2

where l is the length of routing path, Tl is the entire lookup
timeout, and p is given in Eqn (2).

Theorem 2 For Iterative Routing (IR), the expected lookup
latency is given by

E[WIR] = 2lΔ +
1 − p

p
lTh

and the expected message overhead is given by

E[CIR] = (
1
p

+ 1)l

where l is the length of routing path, Th is the one-hop
lookup timeout, and p is given in Eqn (2).

For a better understanding of Theorems 1 and 2, we plot
the expected latency and overhead of recursive routing and
iterative routing under different p in Fig. 1. Given the ex-
pected neighbor replacement time E[S] be fixed, p reflects
the level of system churn. When p is large, the churn rate is
low; otherwise, when p is small, the churn rate is high. For
the timeout setting, we define Tl = (l + 1)Δ and Th = 2Δ,
which are the minimum in the value range.

From Fig. 1(a) and Fig. 1(b), it is found that neither
recursive routing nor iterative routing can outperform the
other in the whole range of churn levels. When the churn
level is low (e.g., p > 0.9), recursive routing performs
better than iterative routing, and has low latency and low
overhead; but its performance deteriorates greatly when the
churn level is high. On the contrary, iterative routing is
rather robust to system churn, and performs better than re-
cursive routing under intensive churn.

In the above study, the length of routing path l is as-
sumed to be fixed (l = 5). However, based on the theorems,

1The proofs of all the theorems in this paper are presented in our tech-
nical report [14] due to the space limit.
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Figure 1: Comparison between RR and IR (a) Expected lookup latency under different churn level (0 ≤ p ≤ 1); (b) Expected
message overhead under different churn level (0 ≤ p ≤ 1); (c) Impact of path length to lookup latency under high churn
(p = 0.5); (d) Impact of path length to lookup latency under low churn (p = 0.9).

l will also impact our comparison results. Fig. 1(c) and Fig.
1(d) show how the path length impacts the routing latency
in systems with a high churn rate (p = 0.5) and a low churn
rate (p = 0.9) respectively. From Fig. 1(c), we observe
that, when the churn rate is high, the latency of recursive
routing increases almost exponentially with the increase of
path length, while iterative routing just has a smooth in-
crease. The lookup performance of recursive routing is al-
ways less efficient than iterative routing no matter what the
path length is. Fig. 1(d) shows that, when the churn rate is
low, in case that the routing path length is short (l ≤ 6), re-
cursive routing can perform better than iterative routing; but
for a longer routing path, recursive routing becomes worse
again.

Although the above results are not surprising, the mean-
ingfulness of our theorems is that, for a given setting (e.g.,
churn level, routing path length, etc), we can exactly know
which lookup strategy is better and how good it is. It is
useful when we make design choices for a special P2P en-
vironment.

Based on the observations, we can find that both recur-
sive routing and iterative routing can only function well un-
der a certain range of churn levels. Although we can select a
proper lookup strategy according to the system churn level,
it will be more ideal if we can devise better approaches that
exploit the benefits of them two and perform the best under
the whole range of churn levels?

Let us first consider a Two-Phase Routing Strategy
(RR+IR): in the first phase, recursive routing is used for fast
routing; if the recursive routing fails, then switches to iter-
ative routing. Its performance is formally given in theorem
3.

Theorem 3 For Two-Phase Routing (RR+IR), the expected
lookup latency is given by

E[WRR+IR] = (l+1)Δpl +[Tl +2lΔ+
1 − p

p
lTh](1−pl)

and the expected message overhead is given by

E[CRR+IR] = (l+1)pl+[
lpl+1 − (l + 1)pl + 1

(1 − p)2
+(

1
p
+1)l](1−pl)

where l is the length of routing path, Th is the one-hop
lookup timeout, and p is given in Eqn (2).

Besides RR+IR, we also propose another lookup strat-
egy, which enhances recursive routing with an acknowl-
edgement (ACK) mechanism. It is called Recursive Routing
with ACK Strategy (RR+ACK) .

The basic idea of RR+ACK is that, besides normal for-
warding like recursive routing, an intermediate node also
sends an ACK containing the addresses of the next hop to
the originator. In case of failure, the originator can reinitiate
another lookup according to the address in the latest ACK.
It is not necessary to start the lookup from the very begin-
ning. To realize RR+ACK, there should exist redundancy
in the routing table. The performance of RR+ACK is given
by Theorem 4.

Theorem 4 For Recursive Routing with ACK (RR+ACK),
the expected lookup latency is given by

E[WRR+ACK ] = (l + 1)Δ +
1 − p

p
lTh

and the expected message overhead is given by

E[CRR+ACK ] = (p +
1
p
)l

where l is the length of routing path, Th is the one-hop
lookup timeout, and p is given in Eqn (2).

The performance comparison of RR, IR, RR+IR and
RR+ACK is plotted in Fig. 2. From Fig. 2(a) and Fig.
2(b), we find that, the simple Two-Phase lookup strategy
(RR+IR) combines Recursive Routing (RR) and Iterative
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Figure 2: Comparison among RR, IR, RR+IR and RR+ACK (a) Expected lookup latency under different churn level (0 ≤
p ≤ 1); (b) Expected message overhead under different churn level (0 ≤ p ≤ 1); (c) Impact of path length to lookup latency
under high churn (p = 0.5); (d) Impact of path length to lookup latency under low churn (p = 0.9).

Routing (IR) rather well. In low-churn environments (e.g.,
when p ≥ 0.9), RR+IR has the comparable lookup latency
to recursive routing, and better than iterative routing; when
the churn becomes intensive (e.g., when p < 0.9), it is only
slightly worse than iterative routing, but much better than
recursive routing. However, the best one is Recursive Rout-
ing with ACK (RR+ACK) strategy. It has the lowest lookup
latency among the four in the whole range of churn levels,
and comparable message overhead to iterative routing. But
RR+ACK will introduce a bit more complexity than RR+IR
during implementation.

In Fig. 2(c) and Fig. 2(d), we also study the impact of
path length on the lookup latency of four lookup strategies
under high-churn and low churn environments separately.
Under both environments, IR, RR+IR and RR+ACK are ro-
bust to the variation of path length, and only RR deteriorates
greatly. RR+ACK has the best performance in all the cases.
In fact, RR+IR and RR+ACK can be seen as the variants
of IR. Therefore, they have similar robustness to the system
churn and the variation of path length.

Besides analytical study, our results are also validated
via simulation. The simulation details are available in our
technical report [14].

3.3 Lookup Parallelism

Lookup parallelism can be used to improve the lookup
performance under churn. In a parallel lookup, the orig-
inator initiates multiple lookups simultaneously. Even if
some of them meet stale contacts, the whole lookup process
can continue to progress without being blocked. Typically,
parallel lookup is used together with iterative routing (e.g.,
Kademlia, etc).

What we want to know is, how much efficiency can we
gain from parallel lookup? As the performance improve-
ment of parallel lookup is at the cost of more message over-
head, another straightforward question arises that, given a
certain level of system churn, what is the optimal degree of

parallelism?
In each routing hop except the last hop, we assume k

lookups are initiated concurrently and k is referred to as the
“Parallelism Degree”. Every successful lookup will return
a list of contacts in the next hop, and here the number of
returned contacts by one lookup is assumed to be bigger
than the parallelism degree k. After receiving the reply, the
originator can initiate another k lookups for the next hop.
The process will be repeated until the destination is reached.

Using the same metrics as Sec. 3.2, our results for the
performance of parallel lookup are as follows:

Theorem 5 For parallel Iterative Routing (pIR), the ex-
pected lookup latency is given by

E[WpIR] = 2lΔ + [
(1 − p)k

1 − (1 − p)k
(l − 1) +

1 − p

p
]Th

and the expected message overhead is given by

E[CpIR] = kp(l − 1) +
k(l − 1)

1 − (1 − p)k
+

1
p

+ 1

where k is the parallelism degree, l is the length of routing
path, Th is the one-hop lookup timeout, and p is given in
Eqn (2).

Based on Theorem 5, we plot the expected latency and
overhead of parallel lookup under different parallelism de-
gree and system churn level in Fig. 3. It is observed that,
parallel lookup can improve the lookup performance for all
situations, however, their performance improvements are
different. In a high-churn environment (e.g., p = 0.1), the
use of parallel lookup is very effective; while in a low-churn
environment (e.g., p = 0.9), its improvement is slight. As
to the overhead, Fig. 3(b) shows that, with the increasing
of parallelism degree k, the message overhead will increase
almost linearly. It is interesting to find that, given k = 10,
the message overhead is comparable in systems with low
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Figure 3: Impact of Lookup Parallelism (a) Expected Lookup Latency; (b) Expected Message Overhead.

churn rate (p = 0.9) and high churn rate (p = 0.1). The
reason lies in that we also take the reply messages into ac-
count. Under a low churn rate, more reply messages will
be generated; while under a high churn rate, the message
overhead is mainly caused by resending messages.

From the observation in the above figures, we can clearly
see that there exists a tradeoff between the latency E[W ]
and the overhead E[C]. The selection of optimal paral-
lelism depends on the balance between these two factors
during design consideration.

Let us take a real P2P system Kad as a case for study,
which is the first widely-deployed DHT file-sharing system.
According to the measurement results in [12], the peer life-
time distribution in Kad follows a heavy-tailed distribution
with the expectation of 2.71 hours, which can be approxi-
mated by a Pareto distribution with α = 2.107, β = 3. The
time for neighbor replacement S is about 4 ∼ 19 minutes,
and the routing path length l is approximately 3 in Kad due
to random bits improvement. Based on the equations in Sec.
3.1 and Theorem 5, we get the numerical results as shown
in Table. 1.

Parallelism Degree E[WpIR] (×Δ) E[CpIR]
k=1 6.0410 6.0205
k=2 6.0138 9.9798
k=3 6.0136 13.9660
k=4 6.0136 17.9524
k=5 6.0136 21.9388

Table 1: Expected latency and overhead under different par-
allelism degree

When k ≥ 2, it can be observed (in Table. 1) that the
latency reduction is very slight compared with the incurred
overhead. If the message overhead is not a big issue, it is
better to set k as 2 or 3. Daniel et al. [13] gives a similar
conclusion (k = 3) by empirical study of the Kad system.

3.4 Lookup Key Replication

Lookup key replication is another important issue on im-
proving lookup performance under churn. If each data key
is only published on exactly one node, it may be prob-
lematic under churn. Considering that, if one node leaves
the system without migrating its data keys to other nodes,
the data keys stored on that node will be lost permanently.
Thus, the following lookups towards the keys in that node
will fail also.

To handle the performance loss due to churn, the most
commonly used approach is replication, in which one data
key is duplicated in multiple peers. By replication, we can
guarantee the lookup to successfully find one replicated key
with high probability.

In spite of the fact that replication has already been
adopted in practical implementations (e.g., Chord, Kadem-
lia and DHash [2]), some basic questions still require our
consideration, e.g., how many replicas are enough to guar-
antee certain reliability? And do we require repair mecha-
nisms to further improve the robustness to failure? We refer
to the above decisions as “replication policy”.

Two general replication policies are studied in this paper,
and they differ in whether a repair mechanism is adopted. In
the following, we will analyze them in details.

3.4.1 Replication without repair mechanism

When publishing a data key, the key is replicated at multiple
nodes, each of which keeps only one copy; later, when at-
tempting to retrieve the key, we should lookup these replica
places and the lookup can be successful provided that there
is at least one copy alive. During implementation, the
process of replication and retrieval may be different for dif-
ferent DHTs, e.g., we can use the successor nodes to place
the replicas; and it is also possible to use hashing to deter-
mine replica places.
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(b) Exponential, 10 hours
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(c) Pareto, 1 hour
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(d) Pareto, 10 hours

Figure 4: Expected lifetime of a replicated key. (a) Exponential lifetime distribution with E[L] = 1 hour; (b) Exponen-
tial lifetime distribution with E[L] = 10 hours; (c) Pareto lifetime distribution with E[L] = 1 hour; (d) Pareto lifetime
distribution with E[L] = 10 hours.

However, no repair will be performed for the failed
replica, and the whole replica system dies when all the repli-
cas fail. In that situation, the following lookups for the repli-
cated data key fail accordingly.

Here, we adopt the lifetime of a replicated key T , instead
of the reliability probability (i.e., “number of nines”), as the
metric to evaluate the key reliability. Given the peer lifetime
distribution, we can deduce the lifetime of the replicated key
accordingly.

Two typical peer lifetime distributions are considered
here: (i) Exponential distribution, which is widely used
in reliability theory to model the time to failure of compo-
nents. Its CDF is given by F (x) = 1 − e−λx, (λ > 0); and
(ii) Pareto distribution, which is observed in real P2P sys-
tems [11], with the CDF given by F (x) = 1 − (1 + x

β )−α,
where α represents the heavy-tailed degree and β is a scale
parameter. Under Pareto distribution, most peers have a
short lifetime, while a few peers stay much longer in the
system.

For a replicated key without repair, we have the follow-
ing theorem:

Theorem 6 Given the replication factor r, the expected
lifetime of a replicated key without repair is given by

E[T ] =
r∑

i=1

(
r

i

)
(−1)(i+1)

λi

for exponential lifetime distribution and

E[T ] =
r∑

i=1

(
r

i

)
(−1)i β

i(1 − α) + 1

for Pareto lifetime distribution with α > 2.

3.4.2 Replication with repair mechanism

The replication process is similar to the above, but a re-
pair mechanism is installed. Periodically, some responsible

node (maybe the key owner, or the replica) checks the live-
ness of other replicas. In case that one replica is found to be
dead, the responsible node will perform repair by recopy-
ing the data key to a new node. By this means, we keep the
number of replicas unchanged; however, if the responsible
node is dead, no repair will be performed any longer. The
repair rate is μ = 1

Trp
, where Trp is the period between two

consecutive repairs performed by the responsible node. For
a replicated key with repair, our results are as follows:

Theorem 7 Given the replication factor r and the repair
rate μ, the expected lifetime of a replicated key with repair
is given by

E[T ] =
1

Πr−1
k=1

kθ
kθ+μ

[
1
rθ

+ (1 − Πr−1
k=1

kθ

kθ + μ
)
1
μ

]

where θ = λ for exponential lifetime distribution and θ =
(α − 2)/β for Pareto lifetime distribution with α > 2.

In Fig. 4, we compare two kinds of replica policies under
exponential lifetime distribution and Pareto lifetime distri-
bution respectively. For each distribution, we consider two
lifetime expectations, i.e., E[L] = 1 hour and E[L] = 10
hours. The former has a high churn rate, while the later
has a low churn rate. For a given lifetime expectation, ex-
ponential distribution has a fixed λ; but for Pareto distribu-
tion, α, β are not fixed. In our study, we consider different
heavy-tailed degrees by varying the value of α.

From Fig. 4, we can observe that, under exponential life-
time distribution, it is hard to achieve a long lifetime sim-
ply by replication. Without a repair mechanism, even with
30 replicas, the expected lifetime of the replicated key is
still rather short even under a low churn environment (i.e.,
E[L] = 10 hours). However, the situation is a bit different
for Pareto lifetime distribution. It can be found that, the re-
pair mechanism is not indispensable for Pareto lifetime dis-
tribution with a very heavy tail. Only by replication, we can
achieve a rather long lifetime for the replicated key. It is true
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even in a high-churn environment. For instance, in the pa-
rameter setting (i.e., E[L] = 1 hour, α = 2.01, β = 1.01),
without repair mechanism, by using 15 replicas, the ex-
pected lifetime of the replicated key is longer than 61 days.
But if we want to increase the lifetime of replicated key to
the level of years, it is necessary to install a repair mecha-
nism. With the linear increase of repair rate, the lifetime is
increased almost exponentially.

As to the selection of the replication factor and re-
pair rate, it is application-specific. We should consider
some practical issues during design, such as data type,
data lifetime, repair cost, etc. The data stored under the
< key, data > pair can be a data fragment (e.g., in storage
systems), a file pointer (e.g., in file-sharing systems), or a
metadata item (e.g., in information management systems).
Also the data itself has a lifetime and it is not always nec-
essary to keep the key as long as possible. For example,
in file-sharing systems, in case the node leaves the system,
it becomes unnecessary to continue the repair of the DHT
keys published by that node.

We still use the Kad file-sharing system as an example.
The Kad algorithm produces 19 key replicas on average,
and the file holder republishes the key every 5 hours. The
key becomes expired if no refresh is performed. We com-
pare the lifetime of the replicated key under two different
replication policies (in Table. 2) based on Theorem 6 and
7. From the results, we find that even without repair, Kad
still can guarantee the existence of the key about 17.5 days
(� peer lifetime expectation E[L] = 2.71hr). Although
the lifetime of the replicated key without repair is not long
enough, it is safe for us to perform repair lazily. When
equipped with a lazy republishing mechanism, the lifetime
is further improved to the level of years. It means that, if
the file holder keeps staying the system and performs re-
publishing periodically, the lookups towards that key can
be successful with very high probability.

Replication Policy Expected Lifetime
without repair 17.5 days

with repair (Trp = 5 hours) 19873 days

Table 2: Expected lifetime of replicated key

In other scenarios, given the information about the peer
lifetime distribution, Theorems 6 and 7 can give us great
help in choosing proper parameters.

4 Conclusion

In this paper, our objective is to provide directions for
DHT design under churn through analytical study. We con-
sider three important aspects in handling churn for DHT
systems. For lookup strategy, two typical lookup strate-

gies - Recursive Routing and Iterative Routing - are studied
in terms of their latency and overhead. We show their ef-
fectiveness under different system settings and explore the
existence of their enhancements. Then, we study the perfor-
mance of parallel lookup and the selection of the degree of
parallelism. Later, we analyze two key replication policies
to handle data key loss due to churn, and discuss whether a
repair mechanism is necessary and how to select the replica-
tion factor. In our future work, we plan to investigate more
design aspects on improving DHT performance.
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